Explicit Multidimensional Ingham–beurling Type Estimates

نویسنده

  • VILMOS KOMORNIK
چکیده

Recently a new proof was given for Beurling’s Ingham type theorem on one-dimensional nonharmonic Fourier series, providing explicit constants. We improve this result by applying a short elementary method instead of the previous complex analytical approach. Our proof equally works in the multidimensional case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ingham – Beurling Type Estimates

Baiocchi et al. generalized a few years ago a classical theorem of Ingham and Beurling by means of divided differences. The optimality of their assumption has been proven by the third author of this note. The purpose of this note to extend these results to vector coefficient sums.

متن کامل

Zero-free Regions for Dirichlet Series

In this paper, we are interested in explicit zero-free discs for some Dirichlet series and we also study a general Beurling-Nyman criterion for Lfunctions. Our results generalize and improve previous results obtained by N. Nikolski and by A. de Roton. As a concrete application, we get, for example, a Beurling-Nyman type criterion for the Siegel zero problem.

متن کامل

L and weak L estimates for the maximal Riesz transform and the maximal Beurling transform

We prove L estimates for the maximal Riesz transform in terms of the Riesz transform itself, for 1 < p ≤ ∞. We show that the corresponding weak L1 estimate fails for the maximal Riesz transform, but surprisingly does hold for the maximal Beurling transform.

متن کامل

Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples

In this paper, we consider the problem of recovering a compactly-supported multivariate function from a collection of pointwise samples of its Fourier transform taken nonuniformly. We do this by using the concept of weighted Fourier frames. A seminal result of Beurling shows that sample points give rise to a classical Fourier frame provided they are relatively separated and of sufficient densit...

متن کامل

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008